Assessment of spectral UV radiation at Marambio Base, Antarctic Peninsula
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131666" target="_blank" >RIV/00216224:14310/23:00131666 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.5194/acp-23-4617-2023" target="_blank" >https://doi.org/10.5194/acp-23-4617-2023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/acp-23-4617-2023" target="_blank" >10.5194/acp-23-4617-2023</a>
Alternative languages
Result language
angličtina
Original language name
Assessment of spectral UV radiation at Marambio Base, Antarctic Peninsula
Original language description
This study aims to assess the dependence of spectral UV radiation on different atmospheric and terrestrial factors, including solar zenith angle, ozone, and cloud cover, in the southern polar environment. For this purpose, 23 260 spectra (300-363 nm), obtained by the B199 Mk-III Brewer spectrophotometer at Marambio Base, Antarctic Peninsula region, over the period 2010-2020, were studied. A neural network model was developed to investigate the effects of the explanatory variables at 127 wavelengths in the interval 300-363 nm, with a 0.5 nm sampling interval. Solar zenith angle (SZA) proved to be the most important parameter, followed by cloud cover, total ozone column (TOC), and surface albedo. The relative SZA effect is greatest at the shortest wavelengths, where a 1ffi decrease in SZA results in a 6 %-18% increase in UV irradiance (305 nm). TOC particularly affects the short wavelengths below approximately 320-325 nm, when for example at 305 nm a 10DU decrease in TOC causes a 7 %-13% increase in UV irradiance. The large-scale ozone holes (e.g., in 20112012, 2014-2015, 2018-2019) caused the spectral UV irradiance at very short wavelengths to peak in spring, whereas in other seasons (e.g., 2010-2011, 2012-2013), the maxima at all wavelengths were recorded in summer (November to January). Absorption of UV radiance by the ozone also affected the temporal distribution of very high spectral UV irradiances (i.e., highest 10% of the distribution), when at 305 nm they were observed both in spring and summer months, and at 340 nm they occurred mostly in summer. The effect of cloud cover was strongest near the fully cloudy sky and in the summer months, when the Antarctic clouds tend to be thickest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10510 - Climatic research
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Atmospheric Chemistry and Physics
ISSN
1680-7316
e-ISSN
1680-7324
Volume of the periodical
23
Issue of the periodical within the volume
8
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
4617-4636
UT code for WoS article
000973756700001
EID of the result in the Scopus database
2-s2.0-85158870249