All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graded index all-dielectric lens antenna designed by phase manipulation and optical path rescaling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131674" target="_blank" >RIV/00216224:14310/23:00131674 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.optlastec.2023.109125" target="_blank" >https://doi.org/10.1016/j.optlastec.2023.109125</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.optlastec.2023.109125" target="_blank" >10.1016/j.optlastec.2023.109125</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graded index all-dielectric lens antenna designed by phase manipulation and optical path rescaling

  • Original language description

    A rotationally symmetric all-dielectric lens antenna is designed by defining the phase function inside the dielectric directly via a closed-form series formula. The refractive index of the lens is modified using state-of-the-art optical path rescaling to keep the refractive index within practical values. The lens optimization is done using the genetic algorithm in MATLAB, where each case is evaluated by conducting linked ray tracing and full -wave electromagnetic simulation in COMSOL. A lens prototype is shown to provide a directivity enhancement of 5.1 dB compared to the optimal conical horn antenna, an improvement of 2 dB compared to the Luneburg lens, and an improvement of 3.8 dB compared to a reference graded index lens. All the examined cases shared a similar length of for the center frequency of 10 GHz. The prototype lens antenna has a maximum refractive index of 2.1, a reflection coefficient of -22 dB, and a side-lobe level of -25 dB at the center frequency of 10 GHz. The lens' performance is consistent in the 9-11 GHz band supported by the standard circular waveguide. The results from a prototype with a discretized refractive index simulated in CST Studio Suite are in excellent agreement with the ones with a continuous refractive index profile simulated in COMSOL.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Optics and Laser Technology

  • ISSN

    0030-3992

  • e-ISSN

    1879-2545

  • Volume of the periodical

    161

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000962872300001

  • EID of the result in the Scopus database

    2-s2.0-85146056003