Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens PpSMC5/6 complex
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00132792" target="_blank" >RIV/00216224:14310/23:00132792 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1111/tpj.16282" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/tpj.16282</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/tpj.16282" target="_blank" >10.1111/tpj.16282</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens PpSMC5/6 complex
Original language description
Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits. Additional factors, like NSE6 within SMC5/6, bind to SMC core complexes and regulate their activities. In the human HsNSE6/SLF2, we recently identified a new CANIN domain. Here we tracked down its sequence homology to lower plants, selected the bryophyte Physcomitrium patens, and analyzed PpNSE6 protein-protein interactions to explore its conservation in detail. We identified a previously unrecognized core sequence motif conserved from yeasts to humans within the NSE6 CANIN domain. This motif mediates the interaction between NSE6 and its NSE5 partner in yeasts and plants. In addition, the CANIN domain and its preceding PpNSE6 sequences bind both PpSMC5 and PpSMC6 arms. Interestingly, we mapped the PpNSE6-binding site at the PpSMC5 arm right next to the PpNSE2-binding surface. The position of NSE6 at SMC arms suggests its role in the regulation of SMC5/6 dynamics. Consistent with the regulatory role of NSE6 subunits, Ppnse6 mutant lines were viable and sensitive to the DNA-damaging drug bleomycin and lost a large portion of rDNA copies. These moss mutants also exhibited reduced growth and developmental aberrations. Altogether, our data showed the conserved function of the NSE6 subunit and architecture of the SMC5/6 complex across species.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLANT JOURNAL
ISSN
0960-7412
e-ISSN
1365-313X
Volume of the periodical
115
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
1084-1099
UT code for WoS article
000995683100001
EID of the result in the Scopus database
2-s2.0-85160655391