Lectures on Poisson Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00133404" target="_blank" >RIV/00216224:14310/23:00133404 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-25666-0_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-25666-0_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-25666-0_2" target="_blank" >10.1007/978-3-031-25666-0_2</a>
Alternative languages
Result language
angličtina
Original language name
Lectures on Poisson Algebras
Original language description
The notion of a Poisson algebra was probably introduced in the first time by A.M. Vinogradov and J. S. Krasil’shchik in 1975 under the name “canonical algebra” and by J. Braconnier in his short note “Algèbres de Poisson” (Comptes rendus Ac.Sci) in 1977.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Groups, Invariants, Integrals, and Mathematical Physics : The Wisła 20-21 Winter School and Workshop
ISBN
9783031256653
Number of pages of the result
76
Pages from-to
41-116
Number of pages of the book
251
Publisher name
Birkhäuser, Springer Nature
Place of publication
Cham
UT code for WoS chapter
—