All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prediction of Urban Population-Facilities Interactions with Graph Neural Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00133441" target="_blank" >RIV/00216224:14310/23:00133441 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-36805-9_23" target="_blank" >https://doi.org/10.1007/978-3-031-36805-9_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-36805-9_23" target="_blank" >10.1007/978-3-031-36805-9_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prediction of Urban Population-Facilities Interactions with Graph Neural Network

  • Original language description

    The urban population interacts with service facilities on a daily basis. The information on population-facilities interactions is considered when analyzing the current city organization and revealing gaps in infrastructure at the neighborhood level. However, often this information is limited to several observation areas. The paper presents a new graph-based deep learning approach to reconstruct population-facilities interactions. In the proposed approach, graph attention neural networks learn latent nodes’ representation and discover interpretable dependencies in a graph of interactions based on observed data of one part of the city. A novel normalization technique is used to balance doubly-constrained flows between two locations. The experiments show that the proposed approach outperforms classic models in a bipartite graph of population-facilities interactions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Science and Its Applications – ICCSA 2023 : Lecture Notes in Computer Science, vol 13956

  • ISBN

    9783031368042

  • ISSN

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    334-348

  • Publisher name

    Springer, Cham

  • Place of publication

    Cham

  • Event location

    Athens

  • Event date

    Jul 3, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001166618800023