The insect circadian rhythm controlled by the vertebrate Cryptochrome is sensitive to weak electromagnetic fields even in permanent darkness.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00133965" target="_blank" >RIV/00216224:14310/23:00133965 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The insect circadian rhythm controlled by the vertebrate Cryptochrome is sensitive to weak electromagnetic fields even in permanent darkness.
Original language description
Mechanisms controlling circadian rhythm and magnetic compass of animals remarkably use the same flavoprotein Cryptochrome (Cry). Whether Cry is a magnetic compass sensor is not yet definitively confirmed, but the fact that insect circadian rhythms have been shown to be sensitive to magnetic fields (MF) are in line with this hypothesis. We were interested to see whether a static weak MF, as well as a static weak radiofrequency (RF) field, affect clock rhythms in a species of insect that has Cry II involved in its clock controlling system, as do vertebrates. In the insect species Pyrrhocoris apterus (order Hemiptera) kept in constant conditions for 10 days, we found that both steady 120uT MF and broad-band <1nT/√Hz RF noise altered the period of the internal clock. Surprisingly, this sensitivity existed under conditions of permanent darkness or – more exactly - under IR light illumination (852nm) only. The result may suggest a non-canonical, light-independent, role for vertebrate Cry II in animal magnetoreception. In contrast to the data presented at the last RIN conference in 2019, we present for the first time a case of magnetic susceptibility of circadian clock system based on the same Cryptochrome type as vertebrates and show that the presence of short-wavelength light may not be a necessary condition for a magnetic susceptibility of a biological processes based on Cry II.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Result continuities
Project
<a href="/en/project/QK1910286" target="_blank" >QK1910286: Effective procedures and strategies for managing of honey bee diseases and sustainable bee keeping</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů