All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Double-phase parabolic equations with variable growth and nonlinear sources

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134048" target="_blank" >RIV/00216224:14310/23:00134048 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1515/anona-2022-0271" target="_blank" >https://doi.org/10.1515/anona-2022-0271</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/anona-2022-0271" target="_blank" >10.1515/anona-2022-0271</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Double-phase parabolic equations with variable growth and nonlinear sources

  • Original language description

    We study the homogeneous Dirichlet problem for the parabolic equations u(t) - div(A(z, vertical bar del u vertical bar)del u) = F(z, u, del u), z = (x, t) is an element of Omega x (0, T), with the double phase flux A(z, vertical bar del u vertical bar)del u (vertical bar del u vertical bar(p(z)-2) + a(z)vertical bar del u vertical bar(q(z) -2))del u and the nonlinear source F. The initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a, p, and q are Lipschitz-continuous, a(z) is nonnegative, and may vanish on a set of nonzero measure. The exponents p, and q satisfy the balance conditions 2N/N+2 &lt; p(-) &lt;= p(z) &lt;= q(z) &lt; p(z) + r*/2 with r* = r* (p(-), N) p(-) = min((Q) over barT) p(z). It is shown that under suitable conditions on the growth of F(z, u, del u) with respect to the second and third arguments, the problem has a solution u with the following properties: u(t) is an element of L-2(Q(T)), vertical bar del u vertical bar(p(z)+delta) is an element of L-1(Q(T)) for every 0 &lt;= delta &lt; r*, vertical bar del u vertical bar(s(z)), a(z)vertical bar del u vertical bar(q(z)) is an element of L-infinity(0, T; L-1(Omega)) with s(z) = max{2, p(z)}. Uniqueness is proven under stronger assumptions on the source F. The same results are established for the equations with the regularized flux A(z, (epsilon(2) + vertical bar del u vertical bar(2))(1/2))del u, epsilon &gt; 0.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Nonlinear Analysis

  • ISSN

    2191-9496

  • e-ISSN

    2191-950X

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    32

  • Pages from-to

    304-335

  • UT code for WoS article

    000851222200002

  • EID of the result in the Scopus database

    2-s2.0-85138305562