Tameness in generalized metric structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134105" target="_blank" >RIV/00216224:14310/23:00134105 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/22:PU146347
Result on the web
<a href="https://doi.org/10.1007/s00153-022-00852-4" target="_blank" >https://doi.org/10.1007/s00153-022-00852-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-022-00852-4" target="_blank" >10.1007/s00153-022-00852-4</a>
Alternative languages
Result language
angličtina
Original language name
Tameness in generalized metric structures
Original language description
We broaden the framework of metric abstract elementary classes (mAECs) in several essential ways, chiefly by allowing the metric to take values in a well-behaved quantale. As a proof of concept we show that the result of Boney and Zambrano (Around the set-theoretical consistency of d-tameness of metric abstract elementary classes, arXiv:1508.05529, 2015) on (metric) tameness under a large cardinal assumption holds in this more general context. We briefly consider a further generalization to partial metric spaces, and hint at connections to classes of fuzzy structures, and structures on sheaves.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
1432-0665
Volume of the periodical
62
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
28
Pages from-to
531-558
UT code for WoS article
000871171100001
EID of the result in the Scopus database
2-s2.0-85140487173