Oscillation and nonoscillation of perturbed nonlinear equations with p-Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134177" target="_blank" >RIV/00216224:14310/23:00134177 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202100169" target="_blank" >https://doi.org/10.1002/mana.202100169</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202100169" target="_blank" >10.1002/mana.202100169</a>
Alternative languages
Result language
angličtina
Original language name
Oscillation and nonoscillation of perturbed nonlinear equations with p-Laplacian
Original language description
In this paper, we analyze oscillatory properties of perturbed half-linear differential equations (i.e., equations with one-dimensional p-Laplacian). The presented research covers the Euler and Riemann-Weber type equations with very general coefficients. We prove an oscillatory result and a nonoscillatory one, which show that the studied equations are conditionally oscillatory (i.e., there exists a certain threshold value that separates oscillatory and nonoscillatory equations). The obtained criteria are easy to use. Since the number of perturbations is arbitrary, we solve the oscillation behavior of the equations in the critical setting when the coefficients give exactly the threshold value. The results are new for linear equations as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
296
Issue of the periodical within the volume
7
Country of publishing house
DE - GERMANY
Number of pages
29
Pages from-to
2809-2837
UT code for WoS article
000969085300001
EID of the result in the Scopus database
2-s2.0-85152447951