Asymptotic properties for solutions of differential equations with singular p(t)-Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134182" target="_blank" >RIV/00216224:14310/23:00134182 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00605-023-01835-0" target="_blank" >https://doi.org/10.1007/s00605-023-01835-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-023-01835-0" target="_blank" >10.1007/s00605-023-01835-0</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic properties for solutions of differential equations with singular p(t)-Laplacian
Original language description
This paper deals with the nonoscillatory solutions of the nonlinear differential equation (a(t)|x'|(p(t)-2)x')' +b(t)|x|(?-2)x = 0 involving "singular" p(t)-Laplacian. Sufficient conditions are given for the existence of extremal solutions, which do not exist in the conventional cases. In addition, we prove the coexistence of extremal solutions and weakly increasing solutions. Some examples are given to illustrate our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
1436-5081
Volume of the periodical
201
Issue of the periodical within the volume
1
Country of publishing house
AT - AUSTRIA
Number of pages
14
Pages from-to
65-78
UT code for WoS article
000957018500001
EID of the result in the Scopus database
2-s2.0-85150509907