Toward a classification of conformal hypersurface invariants
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134240" target="_blank" >RIV/00216224:14310/23:00134240 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0147870" target="_blank" >https://doi.org/10.1063/5.0147870</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0147870" target="_blank" >10.1063/5.0147870</a>
Alternative languages
Result language
angličtina
Original language name
Toward a classification of conformal hypersurface invariants
Original language description
Hypersurfaces embedded in conformal manifolds appear frequently as boundary data in boundary-value problems in cosmology and string theory. Viewed as the non-null conformal infinity of a spacetime, we consider hypersurfaces embedded in a Riemannian (or Lorentzian) conformal manifold. We construct a finite and minimal family of hypersurface tensors-the curvatures intrinsic to the hypersurface and the so-called "conformal fundamental forms"-that can be used to construct natural conformal invariants of the hypersurface embedding up to a fixed order in hypersurface-orthogonal derivatives of the bulk metric. We thus show that these conformal fundamental forms capture the extrinsic embedding data of a conformal infinity in a spacetime.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-00091S" target="_blank" >GA22-00091S: Geometric structures, invariance and differential equations related to mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
64
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
1-10
UT code for WoS article
001052649100001
EID of the result in the Scopus database
2-s2.0-85169789014