All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toward a classification of conformal hypersurface invariants

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134240" target="_blank" >RIV/00216224:14310/23:00134240 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1063/5.0147870" target="_blank" >https://doi.org/10.1063/5.0147870</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0147870" target="_blank" >10.1063/5.0147870</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toward a classification of conformal hypersurface invariants

  • Original language description

    Hypersurfaces embedded in conformal manifolds appear frequently as boundary data in boundary-value problems in cosmology and string theory. Viewed as the non-null conformal infinity of a spacetime, we consider hypersurfaces embedded in a Riemannian (or Lorentzian) conformal manifold. We construct a finite and minimal family of hypersurface tensors-the curvatures intrinsic to the hypersurface and the so-called "conformal fundamental forms"-that can be used to construct natural conformal invariants of the hypersurface embedding up to a fixed order in hypersurface-orthogonal derivatives of the bulk metric. We thus show that these conformal fundamental forms capture the extrinsic embedding data of a conformal infinity in a spacetime.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-00091S" target="_blank" >GA22-00091S: Geometric structures, invariance and differential equations related to mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

    1089-7658

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    001052649100001

  • EID of the result in the Scopus database

    2-s2.0-85169789014