Computing Homotopy Classes for Diagrams
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134379" target="_blank" >RIV/00216224:14310/23:00134379 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10471406
Result on the web
<a href="https://doi.org/10.1007/s00454-023-00513-0" target="_blank" >https://doi.org/10.1007/s00454-023-00513-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-023-00513-0" target="_blank" >10.1007/s00454-023-00513-0</a>
Alternative languages
Result language
angličtina
Original language name
Computing Homotopy Classes for Diagrams
Original language description
We present an algorithm that, given finite diagrams of simplicial sets X, A, Y, i.e., functors $${mathcal {I}}^textrm{op}rightarrow {textsf {s}} {textsf {Set}}$$ I op → s Set , such that (X, A) is a cellular pair, $$dim Xle 2cdot {text {conn}}Y$$ dim X ≤ 2 · conn Y , $${text {conn}}Yge 1$$ conn Y ≥ 1 , computes the set $$[X,Y]^A$$ [ X , Y ] A of homotopy classes of maps of diagrams $$ell :Xrightarrow Y$$ ℓ : X → Y extending a given $$f:Arightarrow Y$$ f : A → Y . For fixed $$n=dim X$$ n = dim X , the running time of the algorithm is polynomial. When the stability condition is dropped, the problem is known to be undecidable. Using Elmendorf’s theorem, we deduce an algorithm that, given finite simplicial sets X, A, Y with an action of a finite group G, computes the set $$[X,Y]^A_G$$ [ X , Y ] G A of homotopy classes of equivariant maps $$ell :Xrightarrow Y$$ ℓ : X → Y extending a given equivariant map $$f:Arightarrow Y$$ f : A → Y under the stability assumption $$dim X^Hle 2cdot {text {conn}}Y^H$$ dim X H ≤ 2 · conn Y H and $${text {conn}}Y^Hge 1$$ conn Y H ≥ 1 , for all subgroups $$Hle G$$ H ≤ G . Again, for fixed $$n=dim X$$ n = dim X , the algorithm runs in polynomial time. We further apply our results to Tverberg-type problem in computational topology: Given a k-dimensional simplicial complex K, is there a map $$Krightarrow {mathbb {R}}^d$$ K → R d without r-tuple intersection points? In the metastable range of dimensions, $$rdge (r+1) k+3$$ r d ≥ ( r + 1 ) k + 3 , the problem is shown algorithmically decidable in polynomial time when k, d, and r are fixed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
1432-0444
Volume of the periodical
70
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
55
Pages from-to
866-920
UT code for WoS article
001033657400003
EID of the result in the Scopus database
2-s2.0-85165252808