All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computing Homotopy Classes for Diagrams

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134379" target="_blank" >RIV/00216224:14310/23:00134379 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/23:10471406

  • Result on the web

    <a href="https://doi.org/10.1007/s00454-023-00513-0" target="_blank" >https://doi.org/10.1007/s00454-023-00513-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-023-00513-0" target="_blank" >10.1007/s00454-023-00513-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computing Homotopy Classes for Diagrams

  • Original language description

    We present an algorithm that, given finite diagrams of simplicial sets X, A, Y, i.e., functors $${mathcal {I}}^textrm{op}rightarrow {textsf {s}} {textsf {Set}}$$ I op → s Set , such that (X, A) is a cellular pair, $$dim Xle 2cdot {text {conn}}Y$$ dim X ≤ 2 · conn Y , $${text {conn}}Yge 1$$ conn Y ≥ 1 , computes the set $$[X,Y]^A$$ [ X , Y ] A of homotopy classes of maps of diagrams $$ell :Xrightarrow Y$$ ℓ : X → Y extending a given $$f:Arightarrow Y$$ f : A → Y . For fixed $$n=dim X$$ n = dim X , the running time of the algorithm is polynomial. When the stability condition is dropped, the problem is known to be undecidable. Using Elmendorf’s theorem, we deduce an algorithm that, given finite simplicial sets X, A, Y with an action of a finite group G, computes the set $$[X,Y]^A_G$$ [ X , Y ] G A of homotopy classes of equivariant maps $$ell :Xrightarrow Y$$ ℓ : X → Y extending a given equivariant map $$f:Arightarrow Y$$ f : A → Y under the stability assumption $$dim X^Hle 2cdot {text {conn}}Y^H$$ dim X H ≤ 2 · conn Y H and $${text {conn}}Y^Hge 1$$ conn Y H ≥ 1 , for all subgroups $$Hle G$$ H ≤ G . Again, for fixed $$n=dim X$$ n = dim X , the algorithm runs in polynomial time. We further apply our results to Tverberg-type problem in computational topology: Given a k-dimensional simplicial complex K, is there a map $$Krightarrow {mathbb {R}}^d$$ K → R d without r-tuple intersection points? In the metastable range of dimensions, $$rdge (r+1) k+3$$ r d ≥ ( r + 1 ) k + 3 , the problem is shown algorithmically decidable in polynomial time when k, d, and r are fixed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

    1432-0444

  • Volume of the periodical

    70

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    55

  • Pages from-to

    866-920

  • UT code for WoS article

    001033657400003

  • EID of the result in the Scopus database

    2-s2.0-85165252808