X-ray metal line emission from the hot circumgalactic medium: probing the effects of supermassive black hole feedback
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134402" target="_blank" >RIV/00216224:14310/23:00134402 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/2307.01277" target="_blank" >https://arxiv.org/abs/2307.01277</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/stad2216" target="_blank" >10.1093/mnras/stad2216</a>
Alternative languages
Result language
angličtina
Original language name
X-ray metal line emission from the hot circumgalactic medium: probing the effects of supermassive black hole feedback
Original language description
We derive predictions from state-of-the-art cosmological galaxy simulations for the spatial distribution of the hot circumgalactic medium (CGM, [0.1-1]R-200c) through its emission lines in the X-ray soft band ([0.3-1.3] keV). In particular, we compare IllustrisTNG, EAGLE, and SIMBA and focus on galaxies with stellar mass 10(10-11.6) M-circle dot at z = 0. The three simulation models return significantly different surface brightness radial profiles of prominent emission lines from ionized metals such as O VII(f), O VIII, and Fe XVII as a function of galaxy mass. Likewise, the three simulations predict varying azimuthal distributions of line emission with respect to the galactic stellar planes, with IllustrisTNG predicting the strongest angular modulation of CGM physical properties at radial range greater than or similar to 0.3-0.5 R-200c. This anisotropic signal is more prominent for higher energy lines, where it can manifest as X-ray eROSITA-like bubbles. Despite different models of stellar and supermassive black hole (SMBH) feedback, the three simulations consistently predict a dichotomy between star-forming and quiescent galaxies at the Milky Way and Andromeda mass range, where the former are X-ray brighter than the latter. This is a signature of SMBH-driven outflows, which are responsible for quenching star formation. Finally, we explore the prospect of testing these predictions with a microcalorimeter-based X-ray mission concept with a large field of view. Such a mission would probe the extended hot CGM via soft X-ray line emission, determine the physical properties of the CGM, including temperature, from the measurement of line ratios, and provide critical constraints on the efficiency and impact of SMBH feedback on the CGM.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/GX21-13491X" target="_blank" >GX21-13491X: Exploring the Hot Universe and Understanding Cosmic Feedback</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
1365-2966
Volume of the periodical
525
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
1976-1997
UT code for WoS article
001054211400002
EID of the result in the Scopus database
2-s2.0-85170412380