All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Annihilators of the Ideal Class Group of an Imaginary Abelian Number Field

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135201" target="_blank" >RIV/00216224:14310/24:00135201 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1307/mmj/20226190" target="_blank" >http://dx.doi.org/10.1307/mmj/20226190</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1307/mmj/20226190" target="_blank" >10.1307/mmj/20226190</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Annihilators of the Ideal Class Group of an Imaginary Abelian Number Field

  • Original language description

    The aim of this paper is a construction of new explicit annihilators of the minus part of the ideal class group of an imaginary abelian number field M, i.e., annihilators which are outside of the Stickelberger ideal, their usual source. This construction works for quite a large class of abelian fields M, a sufficient condition to get a new annihilator is that there is an odd prime l dividing the degree [M:Q], unramified in M/Q, and two primes q and q' ramifying in M/Q, having their decomposition groups cyclic of l-power order such that one of them is a subgroup of the other.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Michigan Mathematical Journal

  • ISSN

    0026-2285

  • e-ISSN

    1945-2365

  • Volume of the periodical

    74

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    1001-1018

  • UT code for WoS article

    001353952300003

  • EID of the result in the Scopus database

    2-s2.0-85209555120