All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efects of mine water discharge on river sediments: metal fate and behaviour, Upper Silesian Coal Basin

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135347" target="_blank" >RIV/00216224:14310/24:00135347 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s12665-023-11356-6" target="_blank" >https://link.springer.com/article/10.1007/s12665-023-11356-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12665-023-11356-6" target="_blank" >10.1007/s12665-023-11356-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efects of mine water discharge on river sediments: metal fate and behaviour, Upper Silesian Coal Basin

  • Original language description

    The study aims to characterise the changes in elemental composition in the river sediments of streams influenced by mine waters enriched with radionuclides. The study took place in the vicinity of Ostrava, a city located in a coal mining region in the Czech Republic, namely the Upper Silesian Coal Basin. River sediments and waters of the Karvinský potok and Stružka streams were investigated. Field measurements were made for ambient dose equivalent rate (ADER). Laboratory gamma spectrometry and X-ray fluorescence were used to determine the content of radionuclides and elemental composition in river sediments. Water samples were analysed for the content of major ions and radionuclides. The field ADER measurement proved elevated content of radionuclides with values exceeding 1,000 nSv/h in both streams. The discharged mine waters were Na–Cl type, containing an 226Ra (0.68–0.70 Bq/l) as a dominant radionuclide. Laboratory measurements of radionuclides in bottom sediments proved that the prevailing source of radiation are 226Ra and 232Th in both streams. The calculated enrichment factors showed extreme values for Sr, Cr, Pb, Zn, Cu, and Mo. The precipitation reactions forming Ca-minerals (calcite and aragonite), Fe-bearing minerals (hematite, goethite and amorphous Fe(OH)3) and hausmannite were found to be the primary geochemical process underway in the studied riverine systems. The correlation between elements and radionuclides demonstrated the significant role of geochemical barriers that lead to the precipitation of radionuclides from solution. The results show that the precipitation takes place preferentially in places where other waters enter the stream, or where recent organic matter is present.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENVIRONMENTAL EARTH SCIENCES

  • ISSN

    1866-6280

  • e-ISSN

    1866-6299

  • Volume of the periodical

    83

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    001138752000003

  • EID of the result in the Scopus database

    2-s2.0-85181711224