Canonical curves and Kropina metrics in Lagrangian contact geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135426" target="_blank" >RIV/00216224:14310/24:00135426 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1361-6544/ad0c2b" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6544/ad0c2b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/ad0c2b" target="_blank" >10.1088/1361-6544/ad0c2b</a>
Alternative languages
Result language
angličtina
Original language name
Canonical curves and Kropina metrics in Lagrangian contact geometry
Original language description
We present a Fefferman-type construction from Lagrangian contact to split-signature conformal structures and examine several related topics. In particular, we describe the canonical curves and their correspondence. We show that chains and null-chains of an integrable Lagrangian contact structure are the projections of null-geodesics of the Fefferman space. Employing the Fermat principle, we realize chains as geodesics of Kropina (pseudo-Finsler) metrics. Using recent rigidity results, we show that 'sufficiently many' chains determine the Lagrangian contact structure. Separately, we comment on Lagrangian contact structures induced by projective structures and the special case of dimension three.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
1361-6544
Volume of the periodical
37
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
36
Pages from-to
1-36
UT code for WoS article
001118895700001
EID of the result in the Scopus database
2-s2.0-85180104898