All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diversity and distribution of Raunkiær's life forms in European vegetation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135608" target="_blank" >RIV/00216224:14310/24:00135608 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1111/jvs.13229" target="_blank" >https://doi.org/10.1111/jvs.13229</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/jvs.13229" target="_blank" >10.1111/jvs.13229</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diversity and distribution of Raunkiær's life forms in European vegetation

  • Original language description

    AimsThe Raunki AE r's system classifies vascular plants into life forms based on the position of renewal buds during periods unfavourable for plant growth. Despite the importance of Raunki AE r's system for ecological research, a study exploring the diversity and distribution of life forms on a continental scale is missing. We aim to (i) map the diversity and distribution of life forms in European vegetation and (ii) test for effects of bioclimatic variables while controlling for habitat-specific responses.LocationEurope.MethodsWe used data on life forms of 8883 species recorded in 546,501 vegetation plots of different habitats (forest, grassland, scrub and wetland). For each plot, we calculated: (i) the proportion of species of each life form and (ii) the richness and evenness of life forms. We mapped these plot-level metrics averaged across 50 km x 50 km grid cells and modelled their response to bioclimatic variables.ResultsHemicryptophytes were the most widespread life form, especially in the temperate zone of Central Europe. Conversely, therophyte and chamaephyte species were more common in the Mediterranean as well as in the dry temperate regions. Moreover, chamaephytes were also more common in the boreal and arctic zones. Higher proportions of phanerophytes were found in the Mediterranean. Overall, a higher richness of life forms was found at lower latitudes while evenness showed more spatially heterogeneous patterns. Habitat type was the main discriminator for most of the responses analysed, but several moisture-related predictors still showed a marked effect on the diversity of therophytes and chamaephytes.ConclusionsOur maps can be used as a tool for future biogeographic and macro-ecological research at a continental scale. Habitat type and bioclimatic conditions are key for regulating the diversity and distribution of plant life forms, with concomitant consequences for the response of functional diversity in European vegetation to global environmental changes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/SS70010002" target="_blank" >SS70010002: Feedbacks between Biodiversity and Climate</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Vegetation Science

  • ISSN

    1100-9233

  • e-ISSN

    1654-1103

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    „e13229“

  • UT code for WoS article

    001157157500001

  • EID of the result in the Scopus database

    2-s2.0-85182694433