Generalized Willmore energies, Q-curvatures, extrinsic Paneitz operators, and extrinsic Laplacian powers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135673" target="_blank" >RIV/00216224:14310/24:00135673 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/10.1142/S0219199723500141" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0219199723500141</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219199723500141" target="_blank" >10.1142/S0219199723500141</a>
Alternative languages
Result language
angličtina
Original language name
Generalized Willmore energies, Q-curvatures, extrinsic Paneitz operators, and extrinsic Laplacian powers
Original language description
Over forty years ago, Paneitz, and independently Fradkin and Tseytlin, discovered a fourth-order conformally invariant differential operator, intrinsically defined on a conformal manifold, mapping scalars to scalars. This operator is a special case of the so-termed extrinsic Paneitz operator defined in the case when the conformal manifold is itself a conformally embedded hypersurface. In particular, this encodes the obstruction to smoothly solving the five-dimensional scalar Laplace equation, and suitable higher dimensional analogs, on conformally compact structures with constant scalar curvature. Moreover, the extrinsic Paneitz operator can act on tensors of general type by dint of being defined on tractor bundles. Motivated by a host of applications, we explicitly compute the extrinsic Paneitz operator. We apply this formula to obtain: an extrinsically-coupled Q-curvature for embedded four-manifolds, the anomaly in renormalized volumes for conformally compact five-manifolds with negative constant scalar curvature, Willmore energies for embedded four-manifolds, the local obstruction to smoothly solving the five-dimensional singular Yamabe problem, and new extrinsically-coupled fourth- and sixth-order operators for embedded surfaces and four-manifolds, respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Contemporary Mathematics
ISSN
0219-1997
e-ISSN
1793-6683
Volume of the periodical
26
Issue of the periodical within the volume
05
Country of publishing house
SG - SINGAPORE
Number of pages
50
Pages from-to
1-50
UT code for WoS article
001157533200001
EID of the result in the Scopus database
2-s2.0-85170275966