All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Low-cost carbon-based sorbents for the removal of pharmaceuticals from wastewaters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135783" target="_blank" >RIV/00216224:14310/24:00135783 - isvavai.cz</a>

  • Alternative codes found

    RIV/60076658:12520/24:43908112

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2214714424004136" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214714424004136</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jwpe.2024.105181" target="_blank" >10.1016/j.jwpe.2024.105181</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Low-cost carbon-based sorbents for the removal of pharmaceuticals from wastewaters

  • Original language description

    The increasing occurrence of pharmaceuticals in wastewater poses environmental and health risks. This study focuses on developing and evaluating cost-effective carbon sorbents, specifically biochar and graphitic carbon nitride, for efficiently removing pharmaceutical contaminants from 2023 wastewater samples from a treatment plant serving around 300,000 people. The adsorptive capabilities of these materials were evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantification of pharmaceuticals and their metabolites. Characterization of these sorbents encompassed analyses of their physical and chemical attributes, such as specific surface area, porosity, and functional group composition, thereby aiding in elucidating their adsorption mechanisms. The study revealed a direct correlation between sorption efficacy and specific surface area. The most effective sorbent was identified as a biochar blend, comprising both commercially available corn and wood-derived biochar and laboratory-synthesized biochar from conifer cones. Notably, this sorbent demonstrated exceptional efficiency in reducing concentrations of major pharmaceutical pollutants. The levels of clarithromycin were reduced from 320 ng/L to 30 ng/L, trimethoprim from 160 ng/L to 8.6 ng/L, telmisartan from 1600 ng/L to 66 ng/L, and diclofenac from 880 ng/L to 260 ng/L.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2023039" target="_blank" >LM2023039: R&D centre for plasma and nanotechnology surface modifications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Water Process Engineering

  • ISSN

    2214-7144

  • e-ISSN

    2214-7144

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    May 2024

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    001227706300001

  • EID of the result in the Scopus database

    2-s2.0-85189871185