All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimization of laser-driven quantum beam generation and the applications with artificial intelligence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00136155" target="_blank" >RIV/00216224:14310/24:00136155 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.aip.org/aip/pop/article/31/5/053108/3295205/Optimization-of-laser-driven-quantum-beam" target="_blank" >https://pubs.aip.org/aip/pop/article/31/5/053108/3295205/Optimization-of-laser-driven-quantum-beam</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0190062" target="_blank" >10.1063/5.0190062</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimization of laser-driven quantum beam generation and the applications with artificial intelligence

  • Original language description

    We have investigated space and astrophysical phenomena in nonrelativistic laboratory plasmas with long high-power lasers, such as collisionless shocks and magnetic reconnections, and have been exploring relativistic regimes with intense short pulse lasers, such as energetic ion acceleration using large-area suspended graphene. Increasing the intensity and repetition rate of the intense lasers, we have to handle large amounts of data from the experiments as well as the control parameters of laser beamlines. Artificial intelligence (AI) such as machine learning and neural networks may play essential roles in optimizing the laser and target conditions for efficient laser ion acceleration. Implementing AI into the laser system in mind, as the first step, we are introducing machine learning in ion etch pit analyses detected on plastic nuclear track detectors. Convolutional neural networks allow us to analyze big ion etch pit data with high precision and recall. We introduce one of the applications of laser-driven ion beams using AI to reconstruct vector electric and magnetic fields in laser-produced turbulent plasmas in three dimensions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/LM2018097" target="_blank" >LM2018097: R&D centre for plasma and nanotechnology surface modifications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics of Plasmas

  • ISSN

    1070-664X

  • e-ISSN

    1089-7674

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    001233619700003

  • EID of the result in the Scopus database

    2-s2.0-85194965403