All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MXene-Derived Oxide Nanoheterostructures for Photocatalytic Sulfamethoxazole Degradation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00136720" target="_blank" >RIV/00216224:14310/24:00136720 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acsanm.4c02523" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.4c02523</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsanm.4c02523" target="_blank" >10.1021/acsanm.4c02523</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MXene-Derived Oxide Nanoheterostructures for Photocatalytic Sulfamethoxazole Degradation

  • Original language description

    Herein, we report for the first time the use of ternary oxide nanoheterostructure photocatalysts derived from (Nby, Ti1–y)2CTx MXene in the treatment of water. Three different compositions of binary MXenes, viz., (Ti0.75Nb0.25)2CTx, (Ti0.5Nb0.5)2CTx, and (Ti0.25Nb0.75)2CTx (with Tx = OH, F, and Cl), were used as single-source precursor to produce TiNbOx-3:1, TiNbOx-1:1, and TiNbOx-1:3 by controlled-atmosphere thermal oxidation. Phase identification and Le Bail refinements confirmed the presence of a mixture of rutile TiO2 and monoclinic Ti2Nb10O29. Morphological investigations through scanning and transmission electron microscopies revealed the retention of layered nanostructures from the MXene precursors and the fusion of TiO2 and Ti2Nb10O29 nanoparticles in forming nanosheets. Among the three oxide nanoheterostructures, TiNbOx-3:1 exhibited the best photocatalytic performance by the removal of 83% of sulfamethoxazole (SMX) after 2 h of reaction. Such a result is explained by a complex influence of structural, morphological, and electronic properties since TiNbOx-3:1 consisted of small-sized crystallites (40–70 nm) and possessed a higher surface area. The suggested electronic band structure is a type-II heterojunction, where the recombination of electrons and holes is minimized during photocatalytic reactions. The photocatalytic degradation of SMX was promoted by the attack of •OH, as evidenced by the detection of 2.2 μM •OH, using coumarin as a probe. This study highlights the potential application of MXene-derived oxide nanoheterostructures in wastewater treatment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2023039" target="_blank" >LM2023039: R&D centre for plasma and nanotechnology surface modifications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Nano Materials

  • ISSN

    2574-0970

  • e-ISSN

    2574-0970

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    16506-16515

  • UT code for WoS article

    001272798300001

  • EID of the result in the Scopus database

    2-s2.0-85199093270