Invasion success of three cool-season grasses in the northern prairie: a test of three hypotheses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00138529" target="_blank" >RIV/00216224:14310/24:00138529 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1111/oik.10266" target="_blank" >https://doi.org/10.1111/oik.10266</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/oik.10266" target="_blank" >10.1111/oik.10266</a>
Alternative languages
Result language
angličtina
Original language name
Invasion success of three cool-season grasses in the northern prairie: a test of three hypotheses
Original language description
Empirical invasion ecology is laden with high context dependency. If general mechanisms underlying invasion success exist, they should be detectable in species that share biological and ecological characteristics. We carried out a growth experiment with Agropyron cristatum, Bromus inermis and Poa pratensis (subsp. angustifolia), to better understand the mechanisms underlying the invasion success of cool-season grasses in northern prairie grasslands of North America. By using a home-away approach, we tested whether 1) non-native plants have a higher performance than native plants, and whether invasiveness is 2) mediated by interactions with soils, such as a release from pathogens or enhanced mutualism, or 3) an adaptation to local soils. We compared seed size and weight of populations in Canada (non-native range) and Eurasia (native range) and carried out an experiment, in which seeds from the non-native and native ranges were planted into sterilized soil (control) and soil from a population in Canada or Eurasia, or local soils, respectively. We found inconsistent effects across species and response variables. Seed size and weight were not significantly different between native and non-native populations. The experiment showed a seed origin effect in A. cristatum (root and total biomass) and B. inermis (root biomass), with non-native populations outperforming native ones. Soil-mediated effects were supported in A. cristatum (root biomass) and local adaptation in B. inermis (root and total biomass). Germination across all species and biomass in P. pratensis did not respond to treatments. Despite the high similarity of our study group, our results indicate that invasiveness might be driven by idiosyncratic causes at the species level. Mechanisms not considered in our study, such as high propagule pressure and preadaptation could also potentially explain the invasion success across species.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Oikos
ISSN
0030-1299
e-ISSN
—
Volume of the periodical
2024
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
„e10266“
UT code for WoS article
001143861400001
EID of the result in the Scopus database
2-s2.0-85182825545