All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Retention efficiency for microplastic in a landscape estimated from empirically validated dynamic model predictions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139114" target="_blank" >RIV/00216224:14310/24:00139114 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jhazmat.2023.132993" target="_blank" >https://doi.org/10.1016/j.jhazmat.2023.132993</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jhazmat.2023.132993" target="_blank" >10.1016/j.jhazmat.2023.132993</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Retention efficiency for microplastic in a landscape estimated from empirically validated dynamic model predictions

  • Original language description

    Soils are recipients of microplastic that can be subsequently transferred to the sea. Land sources dominate inputs to the ocean, but knowledge gaps about microplastic retention by land hinder assessments of input rates. Here we present the first empirical evaluation of a dynamic microplastic fate model operating at landscape level. This mechanistic model accounts for hydrology, soil and sediment erosion, particle characteristics and behavior. We predict microplastic concentrations in water and sediments of the Henares river (Spain) within the measurement uncertainty boundaries (error factors below 2 and 10, respectively). Microplastic export from land and discharge by river fluctuates in a non-linear manner with precipitation and runoff variability. This indicates the need of accurate dynamic descriptions of soil and stream hydrology even when modeling microplastic fate and transport in generic scenarios and at low spatio-temporal resolution. A time-averaged landscape retention efficiency was calculated showing 20-50% of the microplastics added to the catchment over a multiannual period were retained. While the analysis reveals persistent uncertainties and knowledge gaps on microplastic sources to the catchment, these results contribute to the quantitative understanding of the role of terrestrial environments in accumulating microplastics, delaying their transport to the sea.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Hazardous Materials

  • ISSN

    0304-3894

  • e-ISSN

    1873-3336

  • Volume of the periodical

    464

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    001119536600001

  • EID of the result in the Scopus database

    2-s2.0-85177486818