All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flatness, weakly lex colimits, and free exact completions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139325" target="_blank" >RIV/00216224:14310/24:00139325 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s10231-023-01383-2" target="_blank" >https://doi.org/10.1007/s10231-023-01383-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-023-01383-2" target="_blank" >10.1007/s10231-023-01383-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flatness, weakly lex colimits, and free exact completions

  • Original language description

    We capture in the context of lex colimits, introduced by Garner and Lack, the universal property of the free regular and Barr-exact completions of a weakly lex category. This is done by introducing a notion of flatness for functors $$F:{{mathcal {C}}}rightarrow {{mathcal {E}}}$$with lex codomain, and using this to describe the universal property of free $$Phi $$-exact completions in the absence of finite limits, for any given class $$Phi $$of lex weights. In particular, we shall give necessary and sufficient conditions for the existence of free lextensive and free pretopos completions in the non-lex world, and prove that the ultraproducts, in the categories of models of such completions, satisfy an universal property.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali di Matematica Pura ed Applicata

  • ISSN

    0373-3114

  • e-ISSN

    1618-1891

  • Volume of the periodical

    203

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    34

  • Pages from-to

    823-856

  • UT code for WoS article

    001183543300001

  • EID of the result in the Scopus database

    2-s2.0-85173736979