Flatness, weakly lex colimits, and free exact completions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139325" target="_blank" >RIV/00216224:14310/24:00139325 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10231-023-01383-2" target="_blank" >https://doi.org/10.1007/s10231-023-01383-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-023-01383-2" target="_blank" >10.1007/s10231-023-01383-2</a>
Alternative languages
Result language
angličtina
Original language name
Flatness, weakly lex colimits, and free exact completions
Original language description
We capture in the context of lex colimits, introduced by Garner and Lack, the universal property of the free regular and Barr-exact completions of a weakly lex category. This is done by introducing a notion of flatness for functors $$F:{{mathcal {C}}}rightarrow {{mathcal {E}}}$$with lex codomain, and using this to describe the universal property of free $$Phi $$-exact completions in the absence of finite limits, for any given class $$Phi $$of lex weights. In particular, we shall give necessary and sufficient conditions for the existence of free lextensive and free pretopos completions in the non-lex world, and prove that the ultraproducts, in the categories of models of such completions, satisfy an universal property.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
1618-1891
Volume of the periodical
203
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
34
Pages from-to
823-856
UT code for WoS article
001183543300001
EID of the result in the Scopus database
2-s2.0-85173736979