All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Discrete equational theories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139361" target="_blank" >RIV/00216224:14310/24:00139361 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/discrete-equational-theories/B68D91B64C2E6EC95C441A67CD9A24A4" target="_blank" >https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/discrete-equational-theories/B68D91B64C2E6EC95C441A67CD9A24A4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S096012952400001X" target="_blank" >10.1017/S096012952400001X</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Discrete equational theories

  • Original language description

    On a locally $lambda$-presentable symmetric monoidal closed category $mathcal {V}$, $lambda$-ary enriched equational theories correspond to enriched monads preserving $lambda$-filtered colimits. We introduce discrete $lambda$-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving $lambda$-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Structures in Computer Science

  • ISSN

    0960-1295

  • e-ISSN

    1469-8072

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    147-160

  • UT code for WoS article

    001147013000001

  • EID of the result in the Scopus database

    2-s2.0-85183091722