Discrete equational theories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139361" target="_blank" >RIV/00216224:14310/24:00139361 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/discrete-equational-theories/B68D91B64C2E6EC95C441A67CD9A24A4" target="_blank" >https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/discrete-equational-theories/B68D91B64C2E6EC95C441A67CD9A24A4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S096012952400001X" target="_blank" >10.1017/S096012952400001X</a>
Alternative languages
Result language
angličtina
Original language name
Discrete equational theories
Original language description
On a locally $lambda$-presentable symmetric monoidal closed category $mathcal {V}$, $lambda$-ary enriched equational theories correspond to enriched monads preserving $lambda$-filtered colimits. We introduce discrete $lambda$-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving $lambda$-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
1469-8072
Volume of the periodical
34
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
147-160
UT code for WoS article
001147013000001
EID of the result in the Scopus database
2-s2.0-85183091722