All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Candidate Supermassive Black Hole in a Gravitationally Lensed Galaxy at Z ≈ 10

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139412" target="_blank" >RIV/00216224:14310/24:00139412 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.3847/2041-8213/ad391f" target="_blank" >https://iopscience.iop.org/article/10.3847/2041-8213/ad391f</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/2041-8213/ad391f" target="_blank" >10.3847/2041-8213/ad391f</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Candidate Supermassive Black Hole in a Gravitationally Lensed Galaxy at Z ≈ 10

  • Original language description

    While supermassive black holes (SMBHs) are widely observed in the nearby and distant Universe, their origin remains debated with two viable formation scenarios with light and heavy seeds. In the light seeding model, the seed of the first SMBHs form from the collapse of massive stars with masses of 10-100 M ⊙, while the heavy seeding model posits the formation of 104-5 M ⊙ seeds from direct collapse. The detection of SMBHs at redshifts z ≳ 10, edging closer to their formation epoch, provides critical observational discrimination between these scenarios. Here, we focus on the JWST-detected galaxy, GHZ 9, at z ≈ 10 that is lensed by the foreground cluster, A2744. Based on 2.1 Ms deep Chandra observations, we detect a candidate X-ray active galactic nucleus (AGN), which is spatially coincident with the high-redshift galaxy, GHZ 9. The SMBH candidate is inferred to have a bolometric luminosity of ( 1.0 − 0.4 + 0.5 ) × 10 46 erg s − 1 , which corresponds to a black hole (BH) mass of ( 8.0 − 3.2 + 3.7 ) × 10 7 M ⊙ assuming Eddington-limited accretion. This extreme mass at such an early cosmic epoch suggests the heavy seed origin for this BH candidate. Based on the Chandra and JWST discoveries of extremely high-redshift quasars, we have constructed the first simple AGN luminosity function extending to z ≈ 10. Comparison of this luminosity function with theoretical models indicates an overabundant z ≈ 10 SMBH population, consistent with a higher-than-expected seed formation efficiency.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GX21-13491X" target="_blank" >GX21-13491X: Exploring the Hot Universe and Understanding Cosmic Feedback</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal Letters

  • ISSN

    2041-8205

  • e-ISSN

    2041-8213

  • Volume of the periodical

    965

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    001200537400001

  • EID of the result in the Scopus database

    2-s2.0-85190425512