Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139518" target="_blank" >RIV/00216224:14310/24:00139518 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/ajb2.16315" target="_blank" >https://doi.org/10.1002/ajb2.16315</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/ajb2.16315" target="_blank" >10.1002/ajb2.16315</a>
Alternative languages
Result language
angličtina
Original language name
Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences
Original language description
PremiseIncreases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata.MethodsWe investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots.ResultsEvolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms.ConclusionsWe interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
<a href="/en/project/GA20-15989S" target="_blank" >GA20-15989S: Evolution of genome size - a new role for the centromere drive</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
American Journal of Botany
ISSN
0002-9122
e-ISSN
—
Volume of the periodical
111
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
„e16315“
UT code for WoS article
001216789300001
EID of the result in the Scopus database
2-s2.0-85192148295