Semiclassical Moser–Trudinger inequalities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139544" target="_blank" >RIV/00216224:14310/24:00139544 - isvavai.cz</a>
Result on the web
<a href="https://www.ams.org/journals/tran/2024-377-05/S0002-9947-2024-09146-8/home.html" target="_blank" >https://www.ams.org/journals/tran/2024-377-05/S0002-9947-2024-09146-8/home.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/9146" target="_blank" >10.1090/tran/9146</a>
Alternative languages
Result language
angličtina
Original language name
Semiclassical Moser–Trudinger inequalities
Original language description
We extend the Moser–Trudinger inequality of one function to systems of orthogonal functions. Our results are asymptotically sharp when applied to the collective behavior of eigenfunctions of Schrödinger operators on bounded domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-17403S" target="_blank" >GA22-17403S: Nonlinear Schrödinger equations and systems with singular potentials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
1088-6850
Volume of the periodical
377
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
3243-3260
UT code for WoS article
001188004400001
EID of the result in the Scopus database
2-s2.0-85192993012