All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Notions of enriched purity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139671" target="_blank" >RIV/00216224:14310/24:00139671 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.tac.mta.ca/tac/volumes/41/58/41-58abs.html" target="_blank" >http://www.tac.mta.ca/tac/volumes/41/58/41-58abs.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Notions of enriched purity

  • Original language description

    We introduce enriched notions of purity depending on the left class E of a factorization system on the base V of enrichment. Ordinary purity is given by the class of surjective mappings in the category of sets. Under specific assumptions, covering enrichment over quantale-valued metric spaces, ω-complete posets, and quasivarieties, we characterize the (λ, E)-injectivity classes of locally presentable V-categories in terms of closure under a class of limits, λ-filtered colimits, and (λ,E)-pure subobjects.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Volume of the periodical

    41

  • Issue of the periodical within the volume

    58

  • Country of publishing house

    CA - CANADA

  • Number of pages

    47

  • Pages from-to

    2058-2104

  • UT code for WoS article

    001451159000008

  • EID of the result in the Scopus database

    2-s2.0-105000026251