Notions of enriched purity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139671" target="_blank" >RIV/00216224:14310/24:00139671 - isvavai.cz</a>
Result on the web
<a href="http://www.tac.mta.ca/tac/volumes/41/58/41-58abs.html" target="_blank" >http://www.tac.mta.ca/tac/volumes/41/58/41-58abs.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Notions of enriched purity
Original language description
We introduce enriched notions of purity depending on the left class E of a factorization system on the base V of enrichment. Ordinary purity is given by the class of surjective mappings in the category of sets. Under specific assumptions, covering enrichment over quantale-valued metric spaces, ω-complete posets, and quasivarieties, we characterize the (λ, E)-injectivity classes of locally presentable V-categories in terms of closure under a class of limits, λ-filtered colimits, and (λ,E)-pure subobjects.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
58
Country of publishing house
CA - CANADA
Number of pages
47
Pages from-to
2058-2104
UT code for WoS article
001451159000008
EID of the result in the Scopus database
2-s2.0-105000026251