Quantum tomography from incomplete data via MaxEnt principle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F04%3A00024535" target="_blank" >RIV/00216224:14330/04:00024535 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantum tomography from incomplete data via MaxEnt principle
Original language description
We show how the maximum entropy (MaxEnt) principle can be efficiently used for a reconstruction of states of quantum systems from incomplete tomographic data. This MaxEnt reconstruction scheme can be in specic cases several orders of magnitude more ecient than the standard inverse Radon transformation or the reconstruction via direct sampling using pattern functions. We apply the MaxEnt algorithm for a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimentaldata obtained by the group of C. Salomon at the ENS in Paris and we reconstruct Wigner functions of motional quantum states of Cs atoms trapped in an optical lattice. We also reconstruct Wigner functions of a cavity eld based on a measurement of the parity operator. We analyze in detail experimental data obtained by the group of S. Haroche at the ENS in Paris.
Czech name
Kvantová tomografie nekompletních dat pomocí MaxEnt principu
Czech description
Tato práce se zabývá kvantovou tomografií nekompletních dat pomocí MaxEnt principu.
Classification
Type
C - Chapter in a specialist book
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F01%2F0413" target="_blank" >GA201/01/0413: Quantum information processing</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Lecture Notes in Physics
ISBN
3-540-22329-0
Number of pages of the result
46
Pages from-to
—
Number of pages of the book
520
Publisher name
Springer-Verlag
Place of publication
Berlin Heidelberg
UT code for WoS chapter
—