Computing the Expected Accumulated Reward and Gain for a Subclass of Infinite Markov Chains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F05%3A00012779" target="_blank" >RIV/00216224:14330/05:00012779 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Computing the Expected Accumulated Reward and Gain for a Subclass of Infinite Markov Chains
Original language description
We consider the problem of computing the expected accumulated reward and the average gain per transition in a subclass of Markov chains with countable state spaces where all states are assigned a non-negative reward. We state several abstract conditionsthat guarantee computability of the above properties up to an arbitrarily small (but non-zero) given error. Finally, we show that our results can be applied to probabilistic lossy channel systems, a well-known model of processes communicating through faulty channels.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
25th International Conference on Foundations of Software Technology and Theoretical Computer Science
ISBN
3-540-30495-9
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin Heidelberg New York
Event location
Hyderabad, India
Event date
Jan 1, 2005
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000234885800030