All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Protein Secondary Structure Prediction by Machine Learning Methods

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F05%3A00014719" target="_blank" >RIV/00216224:14330/05:00014719 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Protein Secondary Structure Prediction by Machine Learning Methods

  • Original language description

    This paper concerns about an application of machine learning methods to a prediction of a secondary structure of an unknown protein. The aim of this study is to the compare artificial neural networks as the state of art method with decision trees and naive Bayes classifier. Detailed experiments are done on selected PDB database data. Results shows that decision trees achieving 87.4 % Q3 accuracy outperform neural networks (80.5 %). Naive Bayes classifier is unusable for this task.

  • Czech name

    Rozpoznavani sekundarni struktury proteinu metodami strojoveho uceni

  • Czech description

    Clanek se zabyva aplikaci metod strojoveho uceni na problem predikce sekundarni struktury neznamych proteinu. Cilem je porovnat umele neuronove site, jako nejmodernejsi pouzivane metody, s rozhodovacimi stromy a naivnim Bayesovskym klasifikatorem. Podrobne experimenty jsou provadeny na vybranych datech z PDB databaze proteinu. Vysledky ukazuji, ze rozhodovaci stromy dosahuji mnohem lepsich vysledku (87.4%) nez neuronove site (80.5%). Oproti tomu naivni Bayesuv klasifikator se ukazal jako neprilis vhodny.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    1st International Summer School on Computational Biology

  • ISBN

    80-210-3907-8

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    38-43

  • Publisher name

    Masaryk University

  • Place of publication

    Brno, Czech Republic

  • Event location

    Brno, Czech Republic

  • Event date

    Sep 4, 2005

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article