Matroid Tree-Width
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F06%3A00016917" target="_blank" >RIV/00216224:14330/06:00016917 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Matroid Tree-Width
Original language description
We show that the tree-width of a graph can be defined without reference to graph vertices, and hence the notion of tree-width can be naturally extended to matroids. (This extension was inspired by an original unpublished idea of Jim Geelen.) We prove that the tree-width of a graphic matroid is equal to that of its underlying graph. Furthermore, we extend the well-known relation between the branch-width and the tree-width of a graph to all matroids.
Czech name
Stromová šířka matroidů
Czech description
Ukážeme, jak klasickou tree-width grafů definovat bez odkazu na vrcholy. Naše nová definice dává tree-width také pro matroidy.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1117
UT code for WoS article
—
EID of the result in the Scopus database
—