Reachability in Recursive Markov Decision Processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F06%3A00017081" target="_blank" >RIV/00216224:14330/06:00017081 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Reachability in Recursive Markov Decision Processes
Original language description
We consider a class of infinite-state Markov decision processes generated by stateless pushdown automata. This class corresponds to 1.5-player games over graphs generated by BPA systems or (equivalently) 1-exit recursive state machines. An extended reachability objective is specified by two sets S and T of safe and terminal stack configurations, where the membership to S and T depends just on the top-of-the-stack symbol. The question is whether there is a suitable strategy such that the probability of hitting a terminal configuration by a path leading only through safe configurations is equal to (or different from) a given x in {0,1}. We show that the qualitative extended reachability problem is decidable in polynomial time, and that the set of all configurations for which there is a winning strategy is effectively regular. More precisely, this set can be represented by a deterministic finite-state automaton with a fixed number of control states.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
17th International Conference on Concurrency Theory
ISBN
3-540-37376-4
ISSN
0302-9743
e-ISSN
—
Number of pages
17
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin Heidelberg New York
Event location
Bonn, Germany
Event date
Jan 1, 2006
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000240256100024