Finding branch-decomposition and rank-decomposition (Extended abstract)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00022470" target="_blank" >RIV/00216224:14330/07:00022470 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Finding branch-decomposition and rank-decomposition (Extended abstract)
Original language description
We present a new algorithm that can output the rank-decomposition of width at most $k$ of a graph if such exists. For that we use an algorithm that, for an input matroid represented over a fixed finite field, outputs its branch-decomposition of width atmost $k$ if such exists. This algorithm works also for partitioned matroids. Both these algorithms are fixed-parameter tractable, that is, they run in time $O(n^3)$ for each fixed value of $k$ where $n$ is the number of vertices / elements of the input.
Czech name
Výpočet branch- a rank-dekompozic
Czech description
Přinášíme nový algoritmus, který počítá optimální rank-dekompozici grafu, optimální branch-dekompozici matroidu nad konečným tělesem, v FPT čase n^3.
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
European Symposium on Algorithms (ESA 2007)
ISBN
978-3-540-75519-7
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
163
Publisher name
Springer Verlag
Place of publication
Berlin
Event location
Eilat, Israel
Event date
Oct 8, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—