All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Comparison of Fast Level Set-like Algorithms for Image Segmentation in Fluorescence Microscopy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00022769" target="_blank" >RIV/00216224:14330/07:00022769 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Comparison of Fast Level Set-like Algorithms for Image Segmentation in Fluorescence Microscopy

  • Original language description

    Image segmentation, one of the fundamental task of image processing, can be accurately solved using the level set framework. However, the computational time demands of the level set methods make them practically useless, especially for segmentation of large threedimensional images. Many approximations have been introduced in recent years to speed up the computation of the level set methods. Although these algorithms provide favourable results, most of them were not properly tested against ground truth images. In this paper we present a comparison of three methods: the Sparse-Field method [1], Deng and Tsui's algorithm [2] and Nilsson and Heyden's algorithm [3]. Our main motivation was to compare these methods on 3D image data acquired using fluorescence microscope, but we suppose that presented results are also valid and applicable to other biomedical images like CT scans, MRI or ultrasound images. We focus on a comparison of the method accuracy, speed and ability to detect several obj

  • Czech name

    Porovnání rychlých aproximací Level Set metody pro segmentaci obrazu ve fluorescenční mikroskopii

  • Czech description

    Segmentaci obrazu, jednu ze základních úloh zpracování obrazu, lze přesně řešit pomocí Level Set metody.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Visual Computing

  • ISBN

    978-3-540-76855-5

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    571-581

  • Publisher name

    Spinger-Verlag

  • Place of publication

    Berlin, Heidelberg

  • Event location

    Lake Tahoe, Nevada/California

  • Event date

    Nov 26, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article