Enhancing Anaphora Resolution for Czech
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00023097" target="_blank" >RIV/00216224:14330/07:00023097 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Enhancing Anaphora Resolution for Czech
Original language description
Resolution of anaphoric reference is one of the most important challenges in natural language processing (NLP). Functionality of most NLP systems crucially relies on an accurate mechanism for determining which expressions in the input refer to the same entity in the real world. The immense complexity of this issue has led the research community to adopt predominantly knowledge-poor methods, despite the fact that these are known to be incapable of solving this task reliably. This paper suggests several ways of extending such methods by further resources and mechanisms in order to arrive at a more adequate anaphora resolution procedure. First, the paper sketches how to exploit information about verb valencies or co-occurrence statistics to account for semantic plausibility of individual antecedent candidates. Further, several ways of adapting ML-based AR methods are suggested, so that they account for the structure of the AR task more closely.
Czech name
Jak lépe rozpoznávat anaforické vztahy v češtině
Czech description
Rozpoznávání anaforických vztahů je jedním z nejdůležitějších úkolů v automatickém zpracování přirozeného jazyka (ZPJ). Funkčnost většiny systémů ZPJ závisí na vhodnm mechanismu, jenž spolehlivě určí, které výrazy ve vstupním textu odkazují ke stejným entitám ve světě. Obtížnost této problematiky má za následek, že se v praxi používají metody zanedbávající sémantické znalosti, přestože jsou k řešení této úlohy potřeba. Tento článek předkládá několik způsobů, jak tyto metody rozšířit a zvýšit tak jejichúspěšnost. Je nastíněno, jak lze využít informace o slovesných valencích nebo společných výskytech slov k posouzení sémantické vhodnosti kandidátů na antecedent. Dále jsou v článku navrženy možné úpravy metod založených na strojovém učení, aby lépe odrážely strukturu úlohy rozpoznávání anaforických vztahů.
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC536" target="_blank" >LC536: Integrated center for natural language processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
RASLAN 2007
ISBN
978-80-210-4471-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
57-62
Publisher name
Masarykova Univerzita
Place of publication
Brno
Event location
Karlova Studánka
Event date
Jan 1, 2007
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—