Quantum searches on highly symmetric graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F09%3A00029329" target="_blank" >RIV/00216224:14330/09:00029329 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantum searches on highly symmetric graphs
Original language description
We study scattering quantum walks on highly symmetric graphs and use the walks to solve search problems on these graphs. The particle making the walk resides on the edges of the graph, and at each time step scatters at the vertices. All of the vertices have the same scattering properties except for a subset of special vertices. The object of the search is to find a special vertex. A quantum circuit implementation of these walks is presented in which the set of special vertices is specified by a quantumoracle. We consider the complete graph, a complete bipartite graph, and an $M$-partite graph. In all cases, the dimension of the Hilbert space in which the time evolution of the walk takes place is small (between three and six), so the walks can be completely analyzed analytically. Such dimensional reduction is due to the fact that these graphs have large automorphism groups. We find the usual quadratic quantum speedups in all cases considered.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0603" target="_blank" >GA201/07/0603: Quantum multipartite computation, communication and security</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review A
ISSN
1050-2947
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000262979000058
EID of the result in the Scopus database
—