Stabilization of Branching Queueing Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00057347" target="_blank" >RIV/00216224:14330/12:00057347 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Stabilization of Branching Queueing Networks
Original language description
Queueing networks are gaining attraction for the performance analysis of parallel computer systems. A Jackson network is a set of interconnected servers, where the completion of a job at server i may result in the creation of a new job for server j. We propose to extend Jackson networks by "branching" and by "control" features. Both extensions are new and substantially expand the modelling power of Jackson networks. On the other hand, the extensions raise computational questions, particularly concerningthe stability of the networks, i.e, the ergodicity of the underlying Markov chain. We show for our extended model that it is decidable in polynomial time if there exists a controller that achieves stability. Moreover, if such a controller exists, one can efficiently compute a static randomized controller which stabilizes the network in a very strong sense; in particular, all moments of the queue sizes are finite.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F10%2F1469" target="_blank" >GAP202/10/1469: Formal methods for analysis and verification of complex systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science
ISBN
9783939897354
ISSN
1868-8969
e-ISSN
—
Number of pages
12
Pages from-to
507-518
Publisher name
IBFI Schloss Dagstuhl
Place of publication
Paris, France
Event location
Paris, France
Event date
Jan 1, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—