All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Authorship Attribution: Comparison of Single-layer and Double-layer Machine Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00060281" target="_blank" >RIV/00216224:14330/12:00060281 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-32790-2_34" target="_blank" >http://dx.doi.org/10.1007/978-3-642-32790-2_34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-32790-2_34" target="_blank" >10.1007/978-3-642-32790-2_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Authorship Attribution: Comparison of Single-layer and Double-layer Machine Learning

  • Original language description

    In the traditional authorship attribution task, forensic linguistic specialists analyse and compare documents to determine who was their (real) author. In the current days, the number of anonymous docu- ments is growing ceaselessly because of Internet expansion. That is why the manual part of the authorship attribution process needs to be replaced with automatic methods. Specialized algorithms (SA) like delta-score and word length statistic were developed to quantify the similarity between documents, but currently prevailing techniques build upon the machine learning (ML) approach. In this paper, two machine learning approaches are compared: Single-layer ML, where the results of SA (similarities of documents) are used as input attributes for the machine learning, and Double-layer ML with the numerical information characterizing the author being extracted from documents and divided into several groups.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    AI - Linguistics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/VF20102014003" target="_blank" >VF20102014003: Natural Language Analysis in the Internet Environment</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech and Dialogue - 15th International Conference

  • ISBN

    9783642327896

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    282-289

  • Publisher name

    Springer

  • Place of publication

    Brno

  • Event location

    Brno, Czech Republic

  • Event date

    Sep 3, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article