All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Handling Time Changing Data with Adaptive Very Fast Decision Rules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00061019" target="_blank" >RIV/00216224:14330/12:00061019 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-33460-3_58" target="_blank" >http://dx.doi.org/10.1007/978-3-642-33460-3_58</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-33460-3_58" target="_blank" >10.1007/978-3-642-33460-3_58</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Handling Time Changing Data with Adaptive Very Fast Decision Rules

  • Original language description

    Data streams are usually characterized by changes in the underlying distribution generating data. Therefore algorithms designed to work with data streams should be able to detect changes and quickly adapt the decision model. Rules are one of the most interpretable and flexible models for data mining prediction tasks. In this paper we present the Adaptive Very Fast Decision Rules (AVFDR), an on-line, any-time and one-pass algorithm for learning decision rules in the context of time changing data. AVFDR can learn ordered and unordered rule sets. It is able to adapt the decision model via incremental induction and specialization of rules. Detecting local drifts takes advantage of the modularity of rule sets. In AVFDR, each individual rule monitors the evolution of performance metrics to detect concept drift. AVFDR prunes rules that detect drift.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LA09016" target="_blank" >LA09016: Czech Republic membership in the European Research Consortium for Informatics and Mathematics (ERCIM)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Knowledge Discovery in Databases ECML/PKDD

  • ISBN

    9783642334597

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    827-842

  • Publisher name

    Springer Berlin / Heidelberg

  • Place of publication

    Berlin / Heidelberg

  • Event location

    Bristol

  • Event date

    Jan 1, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article