How Not to Characterize Planar-emulable Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00065950" target="_blank" >RIV/00216224:14330/13:00065950 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aam.2012.06.004" target="_blank" >http://dx.doi.org/10.1016/j.aam.2012.06.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aam.2012.06.004" target="_blank" >10.1016/j.aam.2012.06.004</a>
Alternative languages
Result language
angličtina
Original language name
How Not to Characterize Planar-emulable Graphs
Original language description
We investigate the question of which graphs have planar emulators (a locally-surjective homomorphism from some finite planar graph) - a problem raised already in Fellows thesis (1985) and conceptually related to the better known planar cover conjecture by Negami (1986). For over two decades, the planar emulator problem lived poorly in a shadow of Negamis conjecture - which is still open - as the two were considered equivalent. But, at the end of 2008, a surprising construction by Rieck and Yamashita falsified the natural planar emulator conjecture, and thus opened a whole new research field. We present further results and constructions which show how far the planar-emulability concept is from planar-coverability, and that the traditional idea of likening it to projective embeddability is actually very out-of-place. We also present several positive partial characterizations of planar-emulable graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Mathematics
ISSN
0196-8858
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
46-68
UT code for WoS article
000312573600004
EID of the result in the Scopus database
—