All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards a Realistic Distribution of Cells in Synthetically Generated 3D Cell Populations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00066208" target="_blank" >RIV/00216224:14330/13:00066208 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-41184-7_44" target="_blank" >http://dx.doi.org/10.1007/978-3-642-41184-7_44</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-41184-7_44" target="_blank" >10.1007/978-3-642-41184-7_44</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards a Realistic Distribution of Cells in Synthetically Generated 3D Cell Populations

  • Original language description

    In fluorescence microscopy, the proper evaluation of image segmentation algorithms is still an open problem. In the field of cell segmentation, such evaluation can be seen as a study of the given algorithm how well it can discover individual cells as a function of the number of them in an image (size of cell population), their mutual positions (density of cell clusters), and the level of noise. Principally, there are two approaches to the evaluation. One approach requires real input images and an expertthat verifies the segmentation results. This is, however, expert dependent and, namely when handling 3D data, very tedious. The second approach uses synthetic images with ground truth data to which the segmentation result is compared objectively. In this paper, we propose a new method for generating synthetic 3D images showing naturally distributed cell populations attached to microscope slide. Cell count and clustering probability are user parameters of the method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP302%2F12%2FG157" target="_blank" >GBP302/12/G157: Dynamics and Organization of Chromosomes in the Cell Cycle and during Differentiation under Normal and Pathological Conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    17th International Conference on Image Analysys and Processing - ICIAP 2013

  • ISBN

    9783642411830

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    429-438

  • Publisher name

    Springer-Verlag

  • Place of publication

    Berlin, Heidelberg

  • Event location

    Naples, Italy

  • Event date

    Sep 11, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000329811200044