All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Avoiding Anomalies in Data Stream Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00070032" target="_blank" >RIV/00216224:14330/13:00070032 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-40897-7_4" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-40897-7_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-40897-7_4" target="_blank" >10.1007/978-3-642-40897-7_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Avoiding Anomalies in Data Stream Learning

  • Original language description

    The presence of anomalies in data compromises data quality and can reduce the effectiveness of learning algorithms. Standard data mining methodologies refer to data cleaning as a pre-processing before the learning task. The problem of data cleaning is exacerbated when learning in the computational model of data streams. In this paper we present a streaming algorithm for learning classification rules able to detect contextual anomalies in the data. Contextual anomalies are surprising attribute values inthe context defined by the conditional part of the rule. For each example we compute the degree of anomaliness based on the probability of the attribute-values given the conditional part of the rule covering the example. The examples with high degree ofanomaliness are signaled to the user and not used to train the classifier. The experimental evaluation in real-world data sets shows the ability to discover anomalous examples in the data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LG13010" target="_blank" >LG13010: Czech Republic representation in the European Research Consortium for Informatics and Mathematics (ERCIM)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Discovery Science, Proceedings of 16th International Conference DS 2013

  • ISBN

    9783642408960

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    49-63

  • Publisher name

    Springer

  • Place of publication

    Berlin Heidelberg

  • Event location

    Singapore

  • Event date

    Oct 6, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article