State succinctness of two-way finite automata with quantum and classical states
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00072831" target="_blank" >RIV/00216224:14330/13:00072831 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2013.06.005" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2013.06.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2013.06.005" target="_blank" >10.1016/j.tcs.2013.06.005</a>
Alternative languages
Result language
angličtina
Original language name
State succinctness of two-way finite automata with quantum and classical states
Original language description
Two-way finite automata with quantum and classical states (2QCFA) were introduced by Ambainis and Watrous in 2002. In this paper we study state succinctness of 2QCFA. For any m from Z+ and any e<1/2, we show that: 1.there is a promise problem Aeq(m) which can be solved by a 2QCFA with one-sided error e in a polynomial expected running time with a constant number (that depends neither on m nor on eps) of quantum states and View the MathML source classical states, whereas the sizes of the correspondingdeterministic finite automata (DFA), two-way nondeterministic finite automata (2NFA) and polynomial expected running time two-way probabilistic finite automata (2PFA) are at least 2m+2, View the MathML source, and View the MathML source, respectively; 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LG13010" target="_blank" >LG13010: Czech Republic representation in the European Research Consortium for Informatics and Mathematics (ERCIM)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
499
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
98-112
UT code for WoS article
000323809200007
EID of the result in the Scopus database
—