All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Markov Decision Processes with Multiple Long-Run Average Objectives

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00074494" target="_blank" >RIV/00216224:14330/14:00074494 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.lmcs-online.org/ojs/viewarticle.php?id=1109&layout=abstract" target="_blank" >http://www.lmcs-online.org/ojs/viewarticle.php?id=1109&layout=abstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2168/LMCS-10(1:13)2014" target="_blank" >10.2168/LMCS-10(1:13)2014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Markov Decision Processes with Multiple Long-Run Average Objectives

  • Original language description

    We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k limit-average functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the case of one limit-average function, both randomization and memory are necessary for strategies even for epsilon-approximation, and that finite-memory randomized strategies are sufficient for achieving Pareto optimal values. Under the satisfaction objective, in contrast to the case of one limit-average function, infinite memory is necessary for strategies achieving a specific value (i.e.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GPP202%2F12%2FP612" target="_blank" >GPP202/12/P612: Formal Verification of Stochastic Real-Time Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Logical Methods in Computer Science

  • ISSN

    1860-5974

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    29

  • Pages from-to

    1-29

  • UT code for WoS article

    000333744700001

  • EID of the result in the Scopus database