All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Verification of Markov Decision Processes using Learning Algorithms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00075875" target="_blank" >RIV/00216224:14330/14:00075875 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-11936-6_8" target="_blank" >http://dx.doi.org/10.1007/978-3-319-11936-6_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-11936-6_8" target="_blank" >10.1007/978-3-319-11936-6_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Verification of Markov Decision Processes using Learning Algorithms

  • Original language description

    We present a general framework for applying machine-learning algorithms to the verification of Markov decision processes (MDPs). The primary goal of these techniques is to improve performance by avoiding an exhaustive exploration of the state space. Ourframework focuses on probabilistic reachability, which is a core property for verification, and is illustrated through two distinct instantiations. The first assumes that full knowledge of the MDP is available, and performs a heuristic-driven partial exploration of the model, yielding precise lower and upper bounds on the required probability. The second tackles the case where we may only sample the MDP, and yields probabilistic guarantees, again in terms of both the lower and upper bounds, which provides efficient stopping criteria for the approximation. The latter is the first extension of statistical model checking for unbounded properties in MDPs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automated Technology for Verification and Analysis - 12th International Symposium, ATVA 2014

  • ISBN

    9783319119359

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    98-114

  • Publisher name

    Springer

  • Place of publication

    Heidelberg Dordrecht London New York

  • Event location

    Heidelberg Dordrecht London New York

  • Event date

    Jan 1, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article