Emission prediction of a thermal power plant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00077069" target="_blank" >RIV/00216224:14330/14:00077069 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Emission prediction of a thermal power plant
Original language description
The task of prediction of emissions is very challenging and also important. We argued that simple learning techniques that learn only one predictive model are not powerful enough in more complex situations. Better predictive results can be achieved by splitting data into smaller parts and for each part to learn a sub-model. We proposed and tested a novel method that combines meta-learning and ensemble learning. We showed that there is significant increase in prediction accuracy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Znalosti 2014
ISBN
9788024520544
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
98-103
Publisher name
Vysoká škola ekonomická v Praze
Place of publication
Praha
Event location
Jasná pod Chopkom, Nízké Tatry, Slovakia
Event date
Jan 1, 2014
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—