Faster Existential FO Model Checking on Posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00081186" target="_blank" >RIV/00216224:14330/15:00081186 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2168/LMCS-11(4:8)2015" target="_blank" >http://dx.doi.org/10.2168/LMCS-11(4:8)2015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2168/LMCS-11(4:8)2015" target="_blank" >10.2168/LMCS-11(4:8)2015</a>
Alternative languages
Result language
angličtina
Original language name
Faster Existential FO Model Checking on Posets
Original language description
We prove that the model checking problem for the existential fragment of first-order (FO) logic on partially ordered sets is fixed-parameter tractable (FPT) with respect to the formula and the width of a poset (the maximum size of an antichain). While there is a long line of research into FO model checking on graphs, the study of this problem on posets has been initiated just recently by Bova, Ganian and Szeider (CSL-LICS 2014), who proved that the existential fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon their result in two ways: (1) the runtime of our algorithm is O(f(|phi|,w)*n2) on n-element posets of width w, compared to O(g(|phi|)*n^{h(w)}) of Bova et al., and (2) our proofs are simpler and easier to follow. Wecomplement this result by showing that, under a certain complexity-theoretical assumption, the existential FO model checking problem does not have a polynomial kernel.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-03501S" target="_blank" >GA14-03501S: Parameterized algorithms and kernelization in the context of discrete mathematics and logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
1-13
UT code for WoS article
—
EID of the result in the Scopus database
—