FO Model Checking of Interval Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00081403" target="_blank" >RIV/00216224:14330/15:00081403 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2168/LMCS-11(4:11)2015" target="_blank" >http://dx.doi.org/10.2168/LMCS-11(4:11)2015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2168/LMCS-11(4:11)2015" target="_blank" >10.2168/LMCS-11(4:11)2015</a>
Alternative languages
Result language
angličtina
Original language name
FO Model Checking of Interval Graphs
Original language description
We study the computational complexity of the FO model checking problem on interval graphs, i.e., intersection graphs of intervals on the real line. The main positive result is that FO model checking and successor-invariant FO model checking can be solvedin time O(n log n) for n-vertex interval graphs with representations containing only intervals with lengths from a prescribed finite set. We complement this result by showing that the same is not true if the lengths are restricted to any set that is dense in an open subset, e.g., in the set (1, 1 + ?).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-03501S" target="_blank" >GA14-03501S: Parameterized algorithms and kernelization in the context of discrete mathematics and logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
4:11
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
1-20
UT code for WoS article
—
EID of the result in the Scopus database
—